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Abstract

Natural language is one of the most intuitive ways to express human intent. However,

translating instructions and commands towards robotic motion generation and deployment

in the real world is far from being an easy task. The challenge of combining a robot’s

inherent low-level geometric and kinodynamic constraints with a human’s high-level semantic

instructions is traditionally solved using task-specific solutions with little generalizability

between hardware platforms, often with the use of static sets of target actions and commands.

This work instead proposes a flexible language-based framework that allows a user to modify

generic robotic trajectories. The proposed method leverages pre-trained language models

(BERT and CLIP) to encode the user’s intent and target objects directly from a free-form

text input and scene images, fuses geometrical features generated by a transformer encoder

network, and finally outputs trajectories using a transformer decoder, without the need

of priors related to the task or robot information. The system was evaluated in a diverse

set of scenarios and robot form factors, such as manipulation, aerial and legged robots.

Simulation and real-life experiments demonstrate that the proposed transformer model can

successfully follow human intent, modifying the shape and speed of trajectories within

multiple environments. Furthermore, the approach was validated trough user studies both

in virtual and real-world scenarios. The results show that users significantly prefer the

proposed natural language interface over traditional methods such as kinesthetic teaching or

cost-function programming.
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Kurzfassung

Die natürliche Sprache ist eine der intuitivsten Möglichkeiten, menschliche Absichten auszu-

drücken. Das Übersetzen von Anweisungen und Befehlen zur Erzeugung von Roboterbewe-

gungen und deren Einsatz in der realen Welt ist jedoch alles andere als eine einfache Aufgabe.

Die Herausforderung, die einem Roboter innewohnenden, sich auf niederer Stufe befindlichen

geometrischen und kinodynamischen Beschränkungen mit den semantischen Anweisungen

des Menschen auf hoher Ebene zu kombinieren, wird traditionell mit aufgabenspezifischen

Lösungen überwunden. Diese können kaum zwischen verschiedenen Hardwareplattfor-

men verallgemeinert werden, wobei häufig statische Sets von Zielaktionen und -befehlen

Verwendung finden. Stattdessen wird in dieser Arbeit ein flexibles sprachbasiertes Frame-

work vorgeschlagen, das es dem Benutzer ermöglicht, generische Robotertrajektorien zu

ändern. Die vorgeschlagene Methode nutzt vortrainierte Sprachmodelle (BERT und CLIP),

um die Absicht des Benutzers und die Zielobjekte direkt aus einer Freiform-Texteingabe und

Szenenbildern zu kodieren, fusioniert geometrische Merkmale, die von einem Transformator-

Encoder-Netzwerk generiert werden, und gibt schließlich Trajektorien unter Verwendung

eines Transformator-Decoders aus, ohne dass vorausgehende Konfigurationen in Bezug

auf die Aufgabe oder Roboterinformationen erforderlich sind. Das System wurde in einer

Vielzahl von Szenarien und Roboterformen, wie z.B. Manipulations-, Luft- und Laufroboter,

evaluiert. Simulationen und reale Experimente zeigen, dass das vorgeschlagene Transfor-

matormodell erfolgreich den menschlichen Absichten folgen kann, indem es die Form und

Geschwindigkeit von Trajektorien in verschiedenen Umgebungen modifiziert. Darüber hinaus

wurde der Ansatz durch Nutzerstudien sowohl in virtuellen als auch in realen Szenarien

validiert. Die Ergebnisse zeigen, dass die Benutzer das vorgeschlagene natürlichsprach-

liche Interface gegenüber traditionellen Methoden wie kinästhetischem Unterrichten oder

Kostenfunktionsprogrammierung deutlich bevorzugen.
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1. Introduction

Robots are increasingly working in proximity to humans, sharing living and working spaces.

Within this context, it is of high importance for the robotics community to research techniques

that allow robots to robustly operate in such environments. Notwithstanding, despite the

recent advances in hardware and robot planning and control capabilities, full autonomy will

remain out of reach for the foreseeable future [1]. Relying on full autonomy becomes even

more challenging when robots are faced with the uncertainty of the real-world, and need to

adapt to changes in the environment or a scene that goes off the originally planned script

[2]. One way in which this challenge can be addressed is through shared autonomy and by

leveraging human context awareness, understanding, and intent of the scene and objects [3].

The teamwork between humans and robots however strongly depends on a paradigm change

that integrates multimodal perception and communication and natural human interaction

into online robot’s action and trajectory adaptation. In other words, one way to address the

uncertainties of the human world is to equip robots with capabilities to seamlessly interact

with human users and integrate multimodalities into robot actions.

This work focuses on one important facet of human-robot interaction: given a user’s intent

and a cluttered unstructured environment, how can a robot best generate or online adapt a

trajectory in order to respect human preferences and context understanding while tending to

geometrical and dynamics constraints in its surroundings?

This Chapter gives an introduction to the topic. The motivation with exemplary application

areas is presented in Section 1.1. In Section 1.2, an overview of the proposed method is given

and in Section 1.3 the main contributions of this work are stated. Finally, in Section 1.4 the

organization of the following Chapters is outlined.
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1. Introduction

Figure 1.1.: Trajectory reshaping obeying user’s intent. The proposed method fuses natural

language commands, images of the environment, and geometrical data to generate

the modified robot’s trajectory. An approximated representation of the original

trajectory is shown in red, while the modified one in blue. Full videos in the

supplementary material.

1.1. Motivation

Robots of today are still largely pre-programmed for specific tasks and have very limited

capability to operate and adapt to new contexts among unstructured human-centered en-

vironments. Ideally, in such scenarios, the robot should have the ability to recognize and

understand natural language commands in a given context and map them to the task-domain

space – where tasks and constraints are largely influenced by context, intent and affordances

with objects [3]. This paradigm shift deviates from traditional motion planning, and requires

methodologies that are able to integrate multi-modal inputs coming from perception systems

(for instance user-provided language commands and robot vision) together with geometrical

information to shape robot trajectories towards the desired human intent.

Take for instance the human-robot co-existence and interaction scenario depicted in Fig-

ure 1.1, where the robotic arm is deployed to support the user in activities of daily living. In

one of the scenarios, the robot is bringing a cup of tea to the human who is working. The

tea goes very close to the laptop which – even without colliding with the laptop – raises

concerns for the user, diminishing the quality and trust of the interaction. In a human-to-

human scenario, one of the partners could simply ask the other user to move away from the

2



1. Introduction

laptop. In this work, the goal is to embed such understanding in the robot. In the left-side

image in Figure 1.1, the robot is able to understand a generic voice command and adapt

its trajectory accordingly. It is worth noticing that the interaction highlighted involves a

grammatically incorrect sentence that aims to reinforce the expressiveness of existing LLMs

and their integration into the proposed mapping strategy.

On the right side of Figure 1.1, a second human-robot natural interaction is presented. In

this case, the robot is carrying a sharp object, which is perceived as a perilous state from the

human’s perspective. Hence, given the voice command to reduce the speed, the robot is able

to adapt its speed throughout the waypoints that are close to the human – speed is depicted

in the bottom right graph.

Both examples in Figure 1.1 highlight the goals of this work, that is, how to seamlessly

transform human’s multimodal perception and communication in online trajectory adaptation

of the robotic system. Our goal here is also to highlight that human-robot co-existence can

take place in an increasing number of scenarios and with a growing number of different

robotic platforms. Within this context, developing a language interface dissociated from

specific robotic form factors, becomes of great relevance. Taking it into account, this work

addresses the human robot interactions through the lenses of context and robot-agnostic

representations.

1.2. Approach overview

The core of our method lies within natural language understanding, which is the most

intuitive way for a user to express their intent. While large pre-trained language models

(LLMs) such as BERT [4], GPT3 [5] and Megatron-Turing [6] have revolutionized our ability

to perform linguistic tasks in recent years, we have just started to see pioneering works that

incorporate large foundation language models with robotics tasks [7, 8, 9, 10]. The use of

pre-trained LLMs is extremely beneficial within the robotics context because human-provided

annotations are scarce and often costly to obtain. The challenge explored in this thesis

then becomes how we can exploit these rich semantic representations and align them with

geometrical trajectory data when mapping commands towards changes in robotic behavior.

3



1. Introduction

Figure 1.2.: Systems architecture: in blue, the language and contextual encoding module, compose

mainly of frozen pre-trained models. In green, the geometrical encoding. In orange, the

multimodal transformer decoder.

The method proposed uses an initialization from any geometrical planner (e.g. A*, RRT* [11],

MPC [12]), which are concerned solely about obstacle avoidance and dynamics constraints,

and augments it with semantic objectives.

1.3. Contributions

This thesis takes a step into building large pre-trained foundational models for robotics and

shows how such models can create more intuitive and flexible interactions between humans

and machines. Specifically, this work proposes a framework that allows a user to reshape a

trajectory using language instructions. It can effectively align natural language features with

geometrical cues jointly, and perform the goal of trajectory reshaping following human intent.

The main contributions of this work can be summarized as follows:

• Novel system for semantic trajectory modification: This work introduces a new

approach for a language-based interface for robot behavior modification. Introducing a

multimodal attention mechanism for semantic trajectory generation in a context aware

manner.

• Multi-platform evaluation: Extensively evaluate the approach towards multiple robotics

form factors beyond manipulators. We show that the model’s outputs are amenable

4



1. Introduction

to different robot dynamics and motion controller in aerial and legged locomotion

domains.

• Quantification of user interaction experience: Perform diverse user studies to evaluate

and compare human robot interfaces within tasks of trajectory modification.

1.3.1. Dissemination

Some of the parts of this thesis have already been published and presented in peer-review

conferences and workshops:

Reshaping Robot Trajectories Using Natural Language Commands: A Study of Multi-

Modal Data Alignment Using Transformers [13]

• Published at the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2022);

• Workshop on Collaborative Robots and the Work of the Future1 and Workshop on

Shared Autonomy in Physical Human-Robot Interaction: Adaptability and Trust at the

IEEE International Conference on Robotics and Automation (ICRA);

• Northwest Robotics Symposium 2022;

• Project webpage: https://arthurfenderbucker.github.io/NL_trajectory_reshaper/

• Supplementary video: https://www.youtube.com/watch?v=fhSOb3z7aXE

LATTE: LAnguage Trajectory TransformEr [14]

• Foundation Models for Decision Making Workshop - NeurIPS 2022

• Submitted to: ICRA2023 (pending)

• Codebase available at:

https://github.com/arthurfenderbucker/LaTTe-Language-Trajectory-TransformEr.git.

• Supplementary video: https://www.youtube.com/watch?v=yCSZcCJEoPc
1Spotlight contribution
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1. Introduction

1.4. Thesis Organization

This Chapter has given an introduction, including the motivation behind and a brief overview

of the work. The remainder of this work is structured as follows. In Chapter 2, the relevant

background is given. It covers the fundamentals regarding transformers in machine learn-

ing and foundation models, particularly focusing on large language models (LLMs). The

chapter also introduces and discusses the related work in the areas of natural language and

transformers in robotics. In Chapter 3, the problem is trajectory adaptation through natural

language integration is formalized and the proposed approach based on the use of LLMs

and transformers is presented. Chapter 4 presents and discusses experimental evaluation

and a user study aimed at addressing the effectiveness of the proposed solution. Finally, the

conclusion in Chapter 5 gives a brief overview and assessment of the results and presents

possible future research into this area.

6



2. Background

2.1. Human robot interaction

As robots become more prevalent in environments outside of laboratories and dedicated

manufacturing spaces, it is important to offer non-expert users simple ways of communication

with machines. Within this context, the main question that rises is how to translate intuitive

human behaviors into technical commands?

Human to human interactions are often based on multimodal instructions, combining

natural language, gestures, gaze, physical demonstration, and more. The complexity of

understanding such instructions increase dramatically if one consider the interdependency

of the modalities (for example, associating a speech with a given gesture) or if one consider

references to the context or abstract ideas.

Translating such complex interactions towards robotic platforms is an extremely relevant

field of study with diverse facets and sub areas. In the past, diverse types of interfaces were

introduced to allow humans to express their intent in robotic systems. Figure 2.1 depicts

some of this interfaces in the context of trajectory modification. Notwithstanding, considering

the goal of providing non-expert users the capability of intuitively coordinating and changing

a robot’s behavior, this work assumes that a Natural Language (NL) interface is the most

natural and easy form of interaction – such assumption is tested and validated trough user

studies in section 4.1.3.

7



2. Background

Figure 2.1.: Different types of human robot interfaces for trajectory correction

Therefore, this work lies on the field Natural-language-facilitated human–robot cooperation

(NLC) and specifically targets unidirectional instructions. Within this field, as described in

[15], solutions commonly fit into these three categories:

• Natural language instruction understanding

• Natural language-based execution plan generation

• Knowledge-world mapping (action/ context labeling)

The method presented in this work fit on the second category, Natural language-based exe-

cution plan generation. However, in contradiction to most traditional approaches, that focus

on inferring "what" sequence of tasks to perform, we target to follow language instructions

directed to "how" a specific task should be executed.

2.2. Foundational Models

Large language models such as BERT [4], GPT3 [5] and Megatron-Turing [6] have radically im-

proved the quality of machine-generated text, along with our ability to solve natural language

processing tasks. Beyond just language, we see a shift in machine learning architectures in

multiple domains, as the dominant design paradigm changes from designing task-specific

models towards the use of large foundational pre-trained models [16]. Several of these large

models already combine multiple data modalities such as text, images, video, depth, and

even the temporal dimension [17, 18, 19, 20]. The use of foundational models is appealing

8



2. Background

because they are trained on broad datasets over a wide variety of downstream tasks, and

therefore provide general skills which can be used directly or with minimal fine-tuning to new

applications [16].

The field of robotics traditionally uses extremely task and hardware-specific models, which

have to be re-trained and even re-designed if there are minor changes in robot dynamics,

environment, and operational objectives. This inflexible machine learning approach is ripe

for innovation with the use of foundational models [16], in particular when it comes to task

specification in ambiguous scenarios (What should I do?) and task learning that can generalize

across multiple environments (How should I do it?). Recent works have just started to explore

the use of pre-existing foundational models from language and vision towards robotics [21, 8,

22, 23, 24], and also the development of robotics-specific foundational models [20, 25].

Our work aims to leverage information contained in existing vision-language foundational

models to fill the gap in existing tools for human-robot interaction. Even though natural

language is the richest form of communication between humans, modeling human-robot

interactions using language is challenging because we often require vast amounts of data [26,

22, 27, 28], or classically, force the user to operate within a rigid set of instructions [29, 30]. To

tackle these challenges, our framework makes use of two key ideas: first, we employ large

pre-trained language models to provide rich user intent representations, and second, we

align geometrical trajectory data with natural language jointly with the use of a multi-modal

attention mechanism.

2.3. Transformer models

Transformer networks [31] are sequence to sequence models originally introduced to address

language processing tasks. Its working principle relies on mainly two parts: an encoder

block and a decoder block. The first is responsible to map a given input sequence into an

embedding space, with lower dimensionality, that grasps the high-level connection between

the elements of the sequence input. The decoder, on the other hand, uses this embedding

representation of the input to generate the output sequence in an autoregressive manner. This

autoregressive decoder performs the output generation by predicting one element (token) at a

9



2. Background

time, and for that taking into account the values of the previously generated output elements

and the embedding representation of the input.

The success of this architecture relies mainly on the attention mechanism in the interlayers of

the encoder and decoder, and on the fact that it allows high parallelization during the training

process. The attention mechanism enables the model to capture long-term dependencies

with low computational effort and to focus on more relevant connections within the data.

The parallelization benefit translates directly to more efficient use of the current GPUs and

memory. Furthermore, it allows training such models with much higher volumes of data.

This model architecture is currently the state of the art for most sequence-to-sequence prob-

lems, and it is the foundation of the recent advancements in natural language understanding

and temporal-spacial correlations.

2.3.1. BERT model overview

The Bidirectional Encoder Representations from Transformers (BERT) [4] is one of the main

transformer-based models for natural language processing. This large language model was

trained on pure textual data targeting tasks of question answering and language inference.

By training on a large corpus of textual data, BERT learned a semantic understanding

of language and its underlying abstractions and connections. This deep understanding

of language can be easily accessed by stacking the pretrained model with much simpler

learning models (transfer learning) and training it for specific applications without the need

for substantial task-specific architecture modifications.

2.3.2. CLIP model overview

The Contrastive Language Image Pre-training (CLIP) model [7] is a transformer-based ar-

chitecture trained specifically to correlate images with textual description. This model was

trained with a large dataset of 400 million (image, text) pairs collected from the internet and

learned to represent both textual and visual information in a joint latent space. Meaning that

the same values of the model’s embedded space can represent high-level information about

images and their appropriated captions. Figure 2.2 depicts this joint latent space.

10



2. Background

Figure 2.2.: CLIP joint latent space

This characteristic of the clip allows it to be used for a diverse set of problems that require

a correlation between language and visual information. Within the context of this work, CLIP

becomes extremely handy to perform the correlation between natural language interaction

and context perception. In section 3.1.2 with discuss how this model can be applied to find

target objects present in the user’s interaction.

2.4. Related Work

2.4.1. Natural language and robotics

Equipping robots with natural language models provides an intuitive and straightforward

interface to address these challenges through human interaction and decision-making. Classi-

cally, modeling human-robot interactions using language is challenging because it forces the

user to operate within a rigid set of instructions [32], or requires mathematically complex

algorithms to keep track of multiple probability distributions over actions and target objects

[29, 30]. There has been an increase in recent works that explore the use of deep models

to implicitly keep track of the complex mapping between language and actions, but the

downside is that they often require vast amounts of data for training [26, 22, 27, 28].

In the domain of navigation we find literature that investigates the use of multi-modal

representations fusing natural language and perception along with planning modules through

the use of cost functions or reinforcement learning [21, 8, 22, 23, 24, 16, 33, 34]. In the

manipulation domain we also find the work of [8], which uses CLIP [17] embeddings to
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2. Background

combine semantic and spatial information. To this end, it can be often beneficial to use

pre-trained multi-modal representations that align visual and language inputs representation

such as [35, 36, 37, 38], which often using BERT-style [4] training procedures. Representations

are often fine-tuned [39, 40, 41] on the deployment scenario.

2.4.2. Transformers for robotics

Transformers, originally introduced in the language processing [31], quickly proved to

be useful in modeling long-range data dependencies other domains. Within the robotics

motion planning context, transformers architectures have been directly used for trajectory

forecasting [42] and reinforcement learning [43, 44]. A more common use of transformers in

robotics has been as feature extraction modules for one or more modalities simultaneously

that leverage large-scale pre-trained models [13, 9, 7, 8, 10].

Particularly close to this work is the paper of [10]. It uses pre-trained LLMs to create a

semantic cost map that guides a optimization-based motion planner to produce trajectories

that satisfy motion constraints provided by a user in free-form text. Similarly, our method

also uses LLMs for textual and visual feature extraction, however we use a transformer

encoder-decoder pair to align semantic information with geometric cues to recast trajectories.
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Though the development of this work, two incremental approaches were created. In this

chapter, we present our final and most recent methodology for a 3D language-based trajectory

modification [14]. Details of our previous 2D implementation [13] can be found in the

supplementary section A.1.

3.1. Approach

Our overall goal is to provide a flexible interface for human-robot interaction within the

context of trajectory reshaping that is agnostic to robotic platforms. The user provides a

natural language command, and the robot’s body or end-effector behavior, which is expressed

with a 3D trajectory over time, is expected to be modified accordingly. Our trajectory

generation system uses a sequential waypoint prediction model that takes into account

multiple data modalities from scene geometry, environment images and the language input,

all of which are fed into a transformer encoder-decoder pair.

Beyond the user’s semantic intent, we expect the final trajectory to also respect safety and

dynamics space-state constraints, which can be achieved by post-processing the model’s

output into a continuous state space. This last stage allows our same model to be employed

by different robot form factors by using the proper inverse kinematics modules.

3.1.1. Problem Definition

Let ξo : [−1, 1] → R4 be the original normalized robot trajectory which is composed by a

collection of N waypoints and associated velocities ξo = {(x1, y1, z1, v1), ..., (xN , yN , zN , vN))},

where xi, yi, zi and vi are the waypoint coordinates and the velocity at time step i, respectively.
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We assume that the original trajectory obeys the system constraints and can be pre-calculated

using any desired motion planning algorithm, but falls short of the full task specifications.

Let Lin be the user’s natural language input sent to correct the original trajectory, such as

Lin = “Go slower when next to the fragile glasses”.

Let O = {O1, ..., OM} be a collection of M objects in the environment, each with a corre-

sponding position P(Oi) ∈ R3 and image I(Oi). Our goal is to learn a function f that maps

the original trajectory, user command and obstacles towards a modified trajectory ξmod, which

obeys the user’s semantic objectives and is contained in the system feasible domain K:

ξmod = f (ξo, Lin,O) (3.1)

Equation 3.1.: ξmod represents the modified trajectory, ξ0 the original trajectory, Lin the user’s

natural language input, and O the collection of objects

3.1.2. Proposed Network Architecture

We approximate the function f from (3.1) by a parametrized model fθ , learned directly in

a data-driven manner. This mapping is non-trivial since it combines data from multiple

distinct modalities, and also contains ambiguities in solution space since there are multiple

trajectories that satisfy the user’s semantic objective.

Our model architecture is divided into 3 main modules and one constraint satisfaction

step. Fig. 1.2 shows the connection between these modules. First, a language and image

encoder makes use of distinct pre-trained feature encoders (BERT and CLIP) to generate a

embedded representation of the natural language input and to identify the possible objects

referred to in the text. Next, a geometry encoder uses object poses and trajectory waypoints

as inputs and uses a transformer to learn geometric relations between the original trajectory,

speed profiles and the objects in the scene. Finally, a multi-modal transformer decoder

combines the embedded outputs of the two prior modules to generate the modified trajectory

autoregressively. We discuss each module in detail below:

Language and image encoder:

The use of a large language model creates more flexibility in the natural language interface,
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allowing the use of synonyms (shown in Section 4.1.1) and less training data, given that

the encoder has already been trained with a massive corpus. We use a pre-trained BERT

encoder [4], to produce semantic feature qBERT(z|Lin) from the user’s input. In addition, we

use the pre-trained text and image encoders from CLIP [17] to extract latent embeddings

from both the user’s text qt
CLIP(z|Lin) and the M object images qv

CLIP(z|I(O)). We compute

the cosine similarity vector s between the visual and textual embeddings in order to identify

a possible target object for the user’s command. In section 4.1.1 we show that using the

object’s images for target identification brings equivalent results as the simplified approach

with object textual descriptions described in section A.1, since CLIP maps both modalities to

a joint latent space. Finally, we concatenate the similarity vector s and the semantic features

qBERT(z|Lin) forming what we call semantic embedding qS.

Figure 3.1.: Language and image encoder module

Geometry encoder: The original trajectory ξo is composed of points that are low-dimensional

tuples (xi, yi, zi, vi) ∈ R4. In order to extract more meaningful information from each way-

point, we follow the example of [42] and apply a linear transform with learnable weights

Wgeo that projects each of these points into a higher dimensional feature space. The poses

P(Oi) of each object are also processed with the same linear transform, and padded with

zeros for the velocity component.
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We then concatenate the sequences of high-dimensional feature vectors from waypoints

and objects and use a transformer-based feature encoder Tenc to extract geometrical features

for each element. The use of a Transformer model is preferred for sequences over recurrent

networks because its architecture can intrinsically attend to multiple time steps simultaneously.

Conversely, recurrent networks suffer from vanishing gradient issues [42], which negatively

affect feature extraction and training stability.

Multi-modal transformer decoder: Feature embeddings from both language and geometry

are combined as input to a multi-modal transformer decoder block Tdec. This block generates

the reshaped trajectory ξmod sequentially, feeding the last token prediction as input to the next

waypoint prediction. This procedure is analogous to common transformer-based approaches

for language translation [5, 31], but, in this case, one can reason that the proposed model

translates trajectories from the original feature space towards a new space that obeys the user’s

semantic constraints. We use imitation learning to train the model, and employ the Mean

Squared Error (MSE) loss between the predicted and ground-truth waypoints.

Figure 3.2.: Network full architecture. in the left, the Language and image encoder. In the center the

Geometry encoder. In the right, the Multi-modal transformer decoder
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Figure 3.3.: Procedural dataset examples showing the original trajectory (red), ground-truth modifica-

tions, and model predictions (blue). Images representing objects are crawled from the

web (bottom left), and the speed profile can also be modified (bottom right).

3.1.3. Post-processing and execution

Once a trajectory is generated by our model it needs to be post-processed to allow for the

robot’s execution. The modules described here allow our method to be agnostic to specific

robotics platforms.

Constraint satisfaction: Constraint satisfaction is a complex and open field of study in

robotics. In this work we establish two simplifying assumptions regarding our deployment

objectives. First, the base motion planner outputs a set of hard constraints K defined in the

Cartesian space that define an admissible region for the trajectories. Second, we assume
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that the original trajectory is already within in the allowable constraint set. We post-process

our model’s output trajectory by taking steps starting at the original waypoint towards the

direction of new one: ξ(t) = ξo(t) + α(ξmod(t)− ξo(t)), where 0 < α ≤ 1. If at any step we

find that one waypoint reaches an inadmissible region then its position is not further updated.

We note that more complex constraint satisfaction algorithms can be developed here, but the

simple approached described worked well with our scenarios.

Inverse kinematics: Once the final trajectory is obtained, the user may plug in any inverse

kinematics algorithm to obtain final trajectories for higher-dimensional degree of freedom

robots. In this work we evaluate our system with manipulators, aerial and legged robots.

Figure 3.4.: System overview

3.1.4. Synthetic Data Generation

Data collection in the robotics domain can be challenging and expensive, specially when

we require alignment between multiple modalities such as language, vision, and geometry.

We find different strategies in the robotics literature to deal with these issues, ranging

from costly large-scale online user studies for language labeling [45, 46] all the way to

procedural data generation using heuristics [27]. Our work relies on purely procedural

generation of trajectory-language pairs. We make a key hypothesis that the use of large-scale

language models for feature encoding (qBERT, qCLIP) reduces the data requirements in terms

of vocabulary diversity. We assume that if we are able to procedurally generate a small but

meaningful set of examples with semantically-driven trajectory modifications we can train

an effective transformer decoder, given that the BERT and CLIP encoders have already been
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trained with large corpuses and are able to handle vocabulary and sentence variations. These

assumptions are validated experimentally in Section 4.1.3.

Each data sample is composed of a base trajectory ξ0, a natural language input Lin, a

modified trajectory ξmod, and a set of object O = {O1, ..., OM} represented as central poses

P(O) and images I(O). ξ0 is generated by fitting a spline in the Cartesian space through

points generated in a random walk. Objects poses are then randomly generated in space, and

we sample object names from the Imagenet dataset [47] as their labels, and obtain various

images for each one using a crawler over Bing Images using the object name as the web query.

As for the language input Lin, we focus on three main trajectory modifications: i) changes

in the absolute Cartesian trajectory space (e.g. “stay on the left", “go more to the right"), ii)

changes in speed (e.g. “go faster", “go slower when next to x"), and iii) positional changes

relative to objects (e.g. “walk closer to x", “drive further away from x"). We pick a sample

from a vocabulary bank associate each modification type, and calculate a force vector field

over the environment using a handcrafted function F(Lin, P(O)). The field strength may vary

depending on additional intensifier words that can be added to the sentences such as “very",

“a bit", etc. In the section 4.1.1 we also explore augmenting these language inputs using

BART [48], which is a pre-trained paraphrasing model. Finally, we generate the ground-truth

trajectory modification by iteratively optimizing the original trajectory along the vector field.

We introduce one additional hyper-parameter in the dataset generation and model training

which we name locality factor. For the same language prompt, some robotics contexts might

require small localized trajectory changes while others might expect long-range modifications.

After training, the locality factor allows the user to define their desired range of model

influence.

3.2. Trajectory generation

3.2.1. Trajectory model

Each trajectory was initially described as a sequence of massless points in the space connected

with virtual linear springs. Furthermore, aiming to constraint the magnitude of the trajectory

modifications, each modified waypoint was connected with a linear spring connected to its
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original position in the space. Finally, with the goal of keeping the trajectory’s overall shape,

angular linear spring were added between every consecutive link of waypoints. Figure 3.5

shows the virtual mechanical model assumed for the trajectories.

Figure 3.5.: Representation of the mechanical model for the iterative optimization during

dataset generation. Where k1, k2 and α stands for elastic constants of the ideal

springs and tn, tn+1 represent the trajectory’s waypoints at each time step.

3.2.2. Iterative trajectory optimization

The original waypoints were iteratively modified by applying the resultant force vector

Fint computed based on its virtual springs forces and the external forces Fext given by

the list of force functions associated to the natural language (NL) interactions. The max

number of interaction was set to 1000 and early-stop approach was implemented by checking

for insignificant changes of the trajectory (reached stability). The algorithm 1 shows the

optimization procedure described.
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Algorithm 1 Modified trajectory generation

it← 0

while it ≤ 1000 or err ≤ ϵ do

for f ∈ func_list do ▷ external force vector from each NL interacion

Fext = Fext + f (Ξit)

end for

Fint ← Fwp_prev + Fwp_next + Fwp + Fang ▷ internal forces from virtual springs

delta← (Fint + Fext) ∗ step

it← it + 1

pts← pts + delta ▷ update waypoints positions

end while

3.2.3. Initial trajectory generation

The initial trajectories were generated by performing a random walk on the 3D space using

a random number of steps between 50 and 100. The waypoints of this random walk were

then sampled and used as base points for a spline. Similarly, the velocity parameter was

independently generated through the same procedure but now on a one dimensional random

walk and fed into a 2 dimensional spline, considering the step index and its value.

Algorithm 2 Trajectory Generation

nwalk ← random integer[50, 100]

nint ← random integer[3, 15]

xyzwalk ← random_walk_3D(nwalk) ▷ nwalk steps

trajraw ← interpolate(xyzwalk, num_key_steps = nint)

traj← interpolate(trajraw, num_key_steps = 40) ▷ fixes the traj size for N wp

velwalk ← random_walk_1D(nwalk) ▷ nwalk steps

velraw ← interpolate(velwalk, num_key_steps = nint)

vel ← interpolate(velraw, num_key_steps = 40) ▷ fixes the traj size for N wp
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Figure 3.6.: Overlapping steps of the initial trajectory generation for the x,y and z compo-

nents. In blue, the initial random walk (nwalk = 100); in orange, the sequence

of waypoints used for the first interpolation (nint = 10) ; In green the resulting

interpolated trajectory (N = 40)

3.3. Handcrafted cost functions

Each language input was associated with a handcrafted function F(Lin, P(O)) that outputs a

force vector field for the trajectory modification. This work focused on three main forms of

interaction with the environment:

• Cartesian changes: referring to changes on the 3 cartesian axis

• Distance changes: modifying the trajectory’s distance from objects in the scene.

• Speed changes: altering the velocity of the global trajectory or parts of it in the

surrounding of objects.
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details of the implementations of the functions and procedural text generation is described

below:

3.3.1. Text generation procedure

Language description

The natural language interactions were described by using a directional graph structure,

with no loops, where each node was associated with specific functions and parameters.

Figure 3.7 shows a graphical example of this structure. This approach allows us to easily

create rules and connections between language elements and build alongside an associated

function.

Figure 3.7.: Part of the vocabulary graph and its associated functions and attributes for the

distance changes. The connection probability between each node is uniformly

distributed for each depth of the graph

Some of the textual interactions generated can be seen below:

’pass a lot further away from the Panthera tigris’ , ’drive a little closer to the sock’ , ’walk a

little slower while passing nearby the coffee mug’ , ’pass a bit further away from the window

screen’ , ’stay on the front’ , ’pass much closer to the paintbrush’ , ’stay on the top’ , ’drive

very closer to the dial telephone’ , ’stay on the bottom part’ , ’go a little slower when passing

in the proximity of the triceratops’ , ’go to the right’ , ’walk a bit further away from the
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crawfish’ , ’walk a bit further away from the tabby’ , ’drive a little faster when passing near

the bassinet’ , ’go very faster when passing in the surrounding of the Lycaon pictus’ , ’increase

the speed in the proximity of the turnstile’ , ’drive a lot closer to the acorn squash’ , ’stay on

the bottom part’ , ’go to the front’ , ’walk further away from the passenger car’ , ’drive very

closer to the kite’ , ’stay on the right’ , ’stay on the back’ , ’keep a smaller distance from the

swimming trunks’

3.3.2. Cartesian changes

The outputted vector field is an uniform in the entire task space. Its direction is determined

by the cartesian direction word present in the associated text (e.g ”...down”→ [0, 0,−1]) and

its intensity is scaled by the adjectives present in the text (e.g ”very”→ 1.5, None→ 1.0, ”a

bit”→ 0.7).

Algorithm 3 Cartesian changes

function directional_force(traj, direction, intensity)

f orce← direction ∗ intesity

return tile( f orce) ▷ same dimensionality as traj

end function

3.3.3. Distance changes

The outputted vector field points out of the referred object in the text. For every point in the

task space with a distance greater than a given range (determined by the locality factor), the

field intensity is zero, elsewhere within the range, the intensity is constant and depends on

the intensity adjectives present.
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Algorithm 4 Distance change

function repel_atract(traj, direction, sign, taget_obj)

dist← distance from wp to target object

if dist ≤ locality_ f actor then

intesity← cont. force

else

intesity← 0

end if

f orce← direction ∗ intesity ∗ sign

return f orce

end function

3.3.4. Speed changes

The speed change is divided into 2 types, global changes (e.g ”increase the velocity”) and

geometrically depended changes (e.g. ”go faster in the surroundings of the table”). For the

global changes, vector field is constant everywhere for the speed component, with intensity

depend on the intensity adjectives. For geometrically depended changes, the field’s speed

component is constant for the regions within a given range around the referred object and

zero elsewhere.

Algorithm 5 Speed change

function speed_up_down(traj, sign, taget_obj)

dist← distance from wp to target object

if dist ≤ locality_ f actor then

intesity← cont. force

else

intesity← 0

end if

return intesity ∗ sign

end function
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Figure 3.8.: Example of the modified trajectory generation for the input: "walk a lot closer

to the chair". The blue line represents the original trajectory; the blue dots, each

waypoint under optimization; In orange the final modified trajectory; The yellow

volume represents the region of space with an attraction force towards the target

object ("chair": red dot)

3.4. Network Training

We trained and evaluated the model described in Section 3.1 over a dataset containing 100k

examples of procedurally generated trajectory modification. Among these, we used 70k

samples for training, 10k for validation and 20k for testing. We kept both BERT and CLIP

encoder weights frozen in other to avoid biasing the models towards our vocabulary, with
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qBERT(z|Lin) ∈768 and qv
CLIP(z|I(O)) ∈512. We upscale the dimensionality of each scene object

pose from 4→ 400 (depth) using a learned linear matrix, and apply the same procedure to the

40 waypoints from the original trajectory ξo. Tenc is a 1-block transformer encoder, and Tdec is

a 5-block transformer. Each transformer has 3 hidden layers with 512 fully-connected neurons

with Relu activations, one Layer Normalization, 8 attention heads. Figur3.2 represents

graphically the detailed architecture of the model. We use the AdamW [49] optimizer with

an initial learning rate γ = 1e− 4, a linear warm-up period of 15 epochs and a learning rate

decay of 90% after a plateau of 10 epochs on the validation loss.

We employ the MSE loss (LMSE) both for training and model evaluation.

LMSE =
1
N

N

∑
i=1

m

∑
j=1

(
xj

i − pj
i

)2
(3.2)

Equation 3.2.: where xj
i respresents the ground truth waypoint vector and pj

i represents the

predicted waypoint. The j-th component in m dimensional state space (m = 4),

and the i-th indicates the waypoint index on a trajectory of length N.

We use a Nvidia Tesla V100 GPU with batch size of 16, and train the model for 500 epochs

in approximately 2 hours.

Through the use of Azure remote machines multiple models were trained, allowing a quick

iteration on the model’s architecture and hyperparameter.

Geometric augmentation:

We applied a shift on the geometrical values (trajectory’s waypoints and object positions)

using random values between -0.2 and 0.2 for each axis (x,y,z). We also performed a scaling

operation, multiplying the geometrical values by a random scalar from 0.6 to 1.2. These values

were chosen to provide some variation on the waypoints and object positions, but aiming

to keep them whit-in the range [1, 1] to allow a direct forecast of using the tanh activation

function.
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4.1. Experiments

We conducted several simulated and real-world experiments to validate our methods. Our

main goals were to: i) measure the effectiveness of our trajectory modification algorithm in

3D and velocity space, ii) understand the influence of the different architectural components

towards the model’s success, and iii) validate the applicability of the model to multiple robotic

platforms.

4.1.1. Simulation Experiments

We apply our method to several simulated scenarios. First, we show the basic workings of our

trajectory adaptation method through qualitative results which can be visualized in Figure

3.3. In this scenario, we use sample objects that were randomly chosen from crawling the

web and their corresponding images. Assuming there is an initial trajectory that traverses

around these objects, and given language commands indicating how to modify the trajectory

(farther/closer to the object, faster/slower in the vicinity of an object), our model predicts

trajectories that account for user intent. We show both spatial modifications as well as changes

in speed profile in the trajectories output by our model.

Multi-platform evaluation: To validate our framework’s ability to adapt to different robot

dynamics and environments we designed simulated environments using the CoppeliaSim

simulator with Bullet physical engine [50]. While our original training dataset presents

itself in a format amenable to end-effector positions within a manipulation context, this new

simulator allows us to test our system on distinct robotic platforms, dynamics and base

motion controllers.
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Specifically, we employ an aerial vehicle and a legged hexapod platform. The drone

operates within a 3D global frame of reference and uses PID motion controller for trajectory

tracking. In contrast, the hexapod is constrained to 2D movements and uses an open-loop

motion controller. As figure 4.1 shows, our approach can successfully modify the base

trajectories (red) for different types of natural language inputs. Additional experiments can

be seen in the video attachment.
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Figure 4.1.: Model deployed with different robot form factors (drone and legged hexapod) for obstacle

avoidance, speed refinement and absolute cartesian changes. Original trajectory shown

in red, modification in blue, and corresponding speed profiles below each scenario.
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Baseline architectures: We compare our proposed multi-modal transformer against ar-

chitecture variations. Table 4.1 shows the result of a grid search over the number of layers

and encoding dimension (depth) of the transformer encoder and decoders. The model with

one encode layer, 5 decoder layer and an depth of 400 was chosen to be the reference model

for our architecture and further baseline comparisons. We measure performance in terms

the similarity between our model’s output and the ground-truth trajectory modification in

the dataset. Our metrics are MSE (mean squared error), MAE (mean absolute error), DTW

(dynamic time warping), and DFD (discrete Frechet distance).

n.enc n.dec n.depth param. MSE↓ MAE↓ DTW↓ DFD↓

2 3 256 4.95M 0.00306 0.0314 3.1085 0.1346

2 3 400 9.28M 0.00235 0.0273 2.6966 0.1198

2 5 256 6.53M 0.00280 0.0284 2.8455 0.1265

2 5 400 12.7M 0.00238 0.0231 2.4900 0.1152

1 3 256 4.42M 0.00274 0.0272 2.8122 0.1245

1 3 400 8.22M 0.00224 0.0229 2.4445 0.1130

1 5 256 6.00M 0.00277 0.0264 2.7527 0.1238

1 5 400 11.2M 0.00234 0.0227 2.4699 0.1138

Table 4.1.: Architecture variations

Table 4.1 provides valuable findings regarding the model architecture. For instance,

increasing the number of encoder blocks caused no improvement on the model’s performance.

Furthermore the model with 3 decoder blocks presented slightly better results than the

assumed baseline of 5 decoder block.

In addition to model size, in table 4.2 we compare different architecture structures. The

Naive approach simply copies the original trajectory. The No NL input baseline represents

a universal prior of the dataset, with an empty language command. Ours light is a more

compact version of our model with 1 enc., 3 dec. and depth of 256.

Locality factor: Fig. 4.2 shows the response of our model for different values of the locality

factor (LF). This hyper-parameter provides useful information on the range of the desired
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Approach Param. MSE↓ MAE↓ DTW↓ DFD↓

Naive - 0.00437 0.02709 3.568 0.1387

No NL input 11.2M 0.04193 0.1663 15.097 0.5674

Ours light 4,42M 0,00274 0,0272 2,8122 0,1245

Ours 11.2M 0,00234 0,02273 2,4699 0,1138

Table 4.2.: Baseline architecture comparisons

change change over the trajectory, which can serve as a finer user control besides the language

input itself.

Figure 4.2.: Locality factor influence

Dataset size and augmentations: Table 4.3 shows the effect of increasing the training

dataset size in model performance, as well as the effect of applying augmentations in

the training data. An increase in the dataset size from 1k to 10k samples significantly

improves the validation metrics with minimal challenges besides a longer training time,

given that data can be generated procedurally without expensive human annotations. The

geometrical augmentation (randomly shifting and scaling operations) shows a modest increase

in performance.
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Without geometrical augmentation

Dataset size MSE↓ MAE↓ DTW↓ DFD↓

1k 0.02608 0.11063 8.20700 0.46488

10k 0.00243 0.02347 2.47016 0.11683

100k 0.00229 0.02201 2.39301 0.11175

With geometrical augmentation

Dataset size MSE↓ MAE↓ DTW↓ DFD↓

1k 0.01420 0.07590 5.35290 0.35737

10k 0.00248 0.02324 2.50841 0.11593

100k 0.00234 0.02273 2.46992 0.11383

Table 4.3.: Effect of dataset size and geometrical augmentation.

Vocabulary and object diversity:

One key hypothesis assumed true when designing our model architecture was that the use

of pre-trained large language models as feature encoders would make our pipeline amenable

to a diverse set of natural language inputs, despite the relatively small amount of training

examples. To test this hypothesis we compute results using with novel user commands, with

vocabulary not present in our training language labels. Fig. 4.3 shows that our simplified 2D

model (presented in section A.1) still executes the expected behavior, being able to find the

correct semantic meaning despite the new words.
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Figure 4.3.: Trajectory reshaping results using novel vocabulary (not seen in the training data) as the

user input. Our 2D model is able to correctly execute the desired semantic commands

due to the large capacity of the BERT and CLIP text encoders.

4.1.2. Real Robot Experiments with Manipulation

We deployed our model in real-world experiments using a 7-DOF PANDA Arm robot

equipped with a claw gripper. An off-the-shelf CPU/GPU setup computes the arm’s low-level

controller and our model. A RGBD camera (Intel RealSense D435) mounted on the workbench

captures images of the obstacle setting, and a YOLOV3[51] object detector extracts bounding

boxes of the five most likely objects to be sent to the CLIP encoder. The 3D poses of the

objects are inferred using the depth image of each bounding box. Snapshots of the setup

and results can be found in figures 1.1 and 4.4. Additional experiments shown in the video

attachment.
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Figure 4.4.: Real life setup. It depicts the online object detection and 3D pose inference of the

objects present in the scene. Full videos in the supplementary material.

4.1.3. User study experiments

4.1.3.1. How much the model captures the user intent?

We evaluated the model’s performance against baseline architectures in a user study, collecting

in total 300 data-points from 10 participants. Each user was asked to evaluate within a 1-5

Likert scale the trajectory changes generated from 5 different approaches considering a

given NL interaction. Figure 4.5 summarizes the distribution of answers for each baseline.

"Ground Truth" represents the procedural dataset used for training. As the chart shows, most

users considered that our trajectory modifications in the dataset correctly represented the

language commands. A similar pattern emerged from our trained model ("Ours"), which

yielded high-quality ratings. The "Ground Fake" approach shows samples of the dataset

with intentionally wrong modifications, opposite to the ground truth, for the means of

comparison. Non surprisingly, it is rated with the lowest score. The "No language" baseline

was also badly evaluated, showing that the model’s performance is highly dependent on

the language input, and that the model does not memorize bias purely based on the scene

context. Finally, the "Projected 2D" distribution shows a direct comparison with our simplified

approach (section A.1), which produces pure 2D trajectory modifications. Its bad performance

motivates the importance of the additions of 3D and velocity space that we incorporate in

this updated setup.
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Figure 4.5.: Userstudy distributions of answer for each baseline.

After the initial evaluations, each user was asked to freely interact with 5 trajectories using

a text box, and next judge the quality of the generated modifications. 48% of the user inputs

presented words never seen by the model during the training process (out of distribution).

Even under these challenging conditions the model only failed on 24% of the cases. Table 4.4

compares our model’s performance for in and out of distribution settings.

Textual interaction Better [%] Same [%] Worse [%]

In-dataset vocabulary 66.0 26.0 8.0

Free user input 46.0 30.0 24.0

Table 4.4.: Evaluation of out of distribution NL interactions

4.1.3.2. How the NL interface compares with other types of interaction?

We also evaluate our system with real-world experiments, and compare our method with

the use of multiple human-robot interfaces. We use a 7-DOF PANDA Arm robot equipped

with a claw gripper, and execute tasks on a 1× 1m tabletop workspace. A standard desktop

computer with an off-the-shelf GPU connected to the robot computes the original trajectories,

executes our model, and runs low-level controls for the arm.

At the time of this experiment, our architecture was still restricted to 2D trajectory modifi-
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cations, as describe in section A.1. Because of that, we operate the model using 2D planar

projections of the original robot trajectories, and respect the original waypoint heights when

executing the reshaped motion plans. We use object positions given by markers, but we

discuss the use of vision-based localization in section 4.1.2.

Figure 4.6.: Human-robot interfaces tested in the user study: a) natural language (NL),

b) kinesthetic teaching (KT), c) programming via keyboard, and d) trajectory

drawing.

The goal of the study is to have the user control a robotic bartender. A traditional motion

planning algorithm calculates an initial trajectory to transport a bottle of wine towards a

cocktail shaker and pour the liquid inside (we leave the problem of learning how to make

fancy drinks for future iterations of this work). This original trajectory comes dangerously

close to toppling over a tower of crystal glasses, and the user needs to interact with the robot

to make the end-effector trajectory safer. As seen in Fig. 4.6 we test 4 different human-robot

interfaces: natural language (NL-ours), kinesthetic teaching (KT), trajectory drawing (Draw),

and programming obstacle avoidance weights via a keyboard and mouse (Prog). A top-

down view of the experimental platform is seen in Fig. 4.7. All user interactions followed a
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study protocol approved by the Technical University of Munich’s ethics committee, and we

conducted a total of 10 interviews.

Figure 4.7.: Experimental platform used for the user study. The tabletop contains three objects

(a cellphone, a wine bottle and crystal glasses), and the original robot trajectory

(in red) passes dangerously close to the tower of glasses. This exact same view

was used for the drawing interface.

Quantitative user evaluation: We measured statistics on the number of iterations, success

rate and total time taken for users to modify trajectories using the different interfaces. From

Table 4.5 we see that the programming interface takes by far the longest for users to master,

and requires numerous iterations. In the meanwhile, NL is the fastest option. We see a large

number of failures for kinesthetic teaching and drawing because user inputs are often times

kinematically infeasible by the robot joints. The natural language method proved to be the

most robust, and we found no failure cases during in the study.

Interface Avg. iterations Success rate (%) Avg. Time (s)

NL 1.33 100 81

KT 1.78 56.24 139

Draw 1.89 64.7 120

Prog 4.00 91.66 284

Table 4.5.: Statistics collected over the user study experiment
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Qualitative user evaluation: After the experiments we asked users to rate the trajectories

produced by different interfaces according to different criteria in a psychometric questionnaire:

1. How satisfied were you with the final robot motion?

2. How easy was refining the robot motion?

3. How safe was the final robot trajectory?

4. How natural was the human-machine interaction?

5. How predictable was the trajectory for you?

Table 4.6 summarizes the responses. We can see that most methods present a similar user

satisfaction level except for programming, which was rated lower likely due to the difficulty

of interaction. NL was rated as the easiest and most natural method, but at the same time

was deemed less predictable than KT and drawing because with these two methods users

have direct control over the final trajectory.

Interface Satisfied Ease of use Safety Natural Predictable

NL 90 92 92 98 72

KT 90 88 88 78 96

Draw 88 74 100 80 88

Prog 62 58 82 62 48

Table 4.6.: User ratings collected in the user study

4.1.4. Ablation studies

4.1.4.1. What does the multimodal attention layer learn?

Fig. 4.8 displays an attention map that gives us insights into the model’s decisions. Attention

layers of the geometrical transformer encoder focus mainly on the relation between the

trajectory waypoints and the object positions, as well as the connections between neighboring

positions. On the other hand, heatmaps from the transformer decoder show intense focus
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on the previous two waypoints from the output sequence, and a high attention towards the

BERT/CLIP feature vector on the far right.

Figure 4.8.: Heatmap of average attention over the test set showing the transformer encoder and

decoder layers.

4.1.4.2. Training ablation studies

During the development of the model and training procedure, we performed a few experi-

ments aiming to improve the model’s performance. However, the modifications described in

this section did not show significant improvement on the model and in many cases decreased

the model’s accuracy. Despite that, we decided to show and describe the experiments per-

formed for the sake of completeness. The full training procedure used for our final models

can be found in the section3.4.

Training loss variation:

Aiming to achieve better convergence and improve the model’s inference capabilities, we

tested 3 different losses:

• Length Difference and Angle Difference (LDA) loss: As described [52], the LDA loss

function should lead to more stable and accurate approximation of the long term

dynamical behavior in systems. Following its results, we implemented the LDA loss for

our system as described:

But, in spite of testing multiple learning rates, the loss has shown unstable during

training or did not lead to improvements on our system when compared with the MSE

loss.
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LLDA =
1
N

N

∑
i=1

(
k1 ·

√
(|xi| − |pi|)2

|xi|+ |pi|
+

1
2
·
(

1− xi · pi

|xi| · |pi|

))
(4.1)

Equation 4.1.: Where xi stands for the ground truth waypoint vector and pi for the predicted

waypoint vector. The i-th indicates the waypoint index on a trajectory of length

N.

• LDA + MSE loss: Aiming to better stabilize the loss during training, as described in

[52], we combined the LDA loss with MSE:

LLDA_MSE = c · LLDA + (1− c) · LMSE (4.2)

Equation 4.2.: Where c stands for the weighting factor between the losses

The combined approach indeed improved the training stability. However, even testing

multiple balances between the losses (c) and different learning rates, we were not able

to achieve better results than by using just the MSE loss.

• soft-DTW loss: considering that the Dynamic time warping (DTW) was created to

quantify the difference between sets of temporal-spatial data, it is extremely suitable to

describe similarity between trajectories. [53] proposed a differentiable version of this

metric, allowing it to be used to optimize learning models. Motivated by the results

achieved by the o work of [54] and [53] we incorporated the metric in our training

pipeline. Nevertheless, due to the quadratic complexity (O(n)) of soft-DTW and the

high number of waypoints on our trajectories, the use of the loss led to impracticable

training time, not being suitable for our setup.

Transformer withoutLayer Normalization

Considering that our implementation uses the transformer architecture for a regression

task – predicting each new waypoint positions in a continuous state space –, we stated the

hypothesis, that by removing the "Layer Normalization" layer inside the transformer encoder

and decoder blocks, the prediction accuracy might increase, since the absolute information of

the waypoints locations would not be lost in the normalization process. However, against our
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expectations, this hypothesis has shown to be false. By removing the "Layer Normalization",

the training process became unstable even for much lower learning rates. We assume that this

behavior occurred due to exploding gradients during the training process and insufficient

regularization in the deeper layer of the network.

Dataset textual augmentation: Aiming to validate possible improvements on the model’s

performance, we augmented the language inputs using the paraphrasing model BART [48].

Although the model correctly paraphrased a few samples, most of them were kept unchanged

or didn’t follow our original semantic intent. 80 assume that because of these failure cases

that our model didn’t perform better with the augmentation. Some selected examples of

success and failure cases are presented in section A.3
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5.1. Conclusion and Discussion

This work develops a flexible language-based human-robot interface that allows a user to

modify existing robotic trajectories. Our method leverages pre-trained large language and

image models (BERT and CLIP) to encode the user’s intent and target objects directly from a

free- form text input and scene images, fuses geometrical features generated by a transformer

encoder network, and outputs trajectories using a transformer decoder.

Our model can modify robot trajectories in 3D and velocity spaces. The output trajectory

can be post-processed and applied towards diverse different platforms such as manipulation,

aerial vehicles and legged robots. We provide a comprehensive set of simulated and real-world

experiments demonstrating the effectiveness of our model and highlighting insights into

what the model is learning. We validate our approach on diverse user studies, quantifying

the model’s its performance against benchmarks and different types of interactions.

5.2. Future directions

The applications of the method presented can extend beyond geometrical modifications of

trajectories. In future iterations of this work, we seek to explore additional modalities such

as force inputs, as well as the ability of the model to interact with the user over longer time

horizons and multiple instruction inputs. We hope that our framework can serve as a building

block for a novel paradigm in human-robot collaboration that employ large language models.

Furthermore, the implications of this work could surpass its initial target of human robot

interactions. We aim to explore the use of such a natural language interface to facilitate

the learning processes of Reinforcement Learning (RL) algorithms. Since it allows humans
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to easily intervene and correct generic trajectories, it could be used to guide the RL algo-

rithm’s convergence during a semi-supervised training process through sparse meaningful

interactions.

5.3. Final remarks

This thesis takes a step into building large pre-trained foundational models for robotics and

shows how such models can create more intuitive and flexible interactions between human

and machines. We hope that the concept and methods proposed in this work can be used

to expand the capabilities of real-world robotics systems in multiple other applications, and

allow a more trustful and interactive paradigm in human-robot cooperations.
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A.1. 2D simplified case

As an initial implementation of our language-based trajectory modification system, we

addressed the problem in a simplified manner. In this section, we describe this initial 2D

approach and depict its main differences comparison to our final method described in the

chapter 3.

A.1.1. Simplified problem definition

One typical application for our systems is that of a user re-configuring a robotic arm trajectory

that, although already avoids collisions, gets uncomfortably close to particular fragile obstacles

in the environment. We design the trajectory generation system with a sequential waypoint

prediction decoder, which takes into account multiple data modalities from geometry and

language into a transformer network. The modified trajectory should be as close as possible

to the original one throughout its length and respect the original start and goal constraints,

while obeying the user’s semantic intent. Fig.A.1 depicts the expected model behavior in a

typical use-case scenario addressed in this simplified case.

Let ξo : [0, 1]→ R2 be the original robot trajectory, which is composed by a collection of N

waypoints ξo = {(x1, y1), ..., (xN , yN)}. We assume that the original trajectory is a reasonable

path from the start to the goal positions (i.e. avoids collisions) and can be pre-calculated

using any desired motion planning algorithm, but falls short of the full task specifications.

Let Lin be the user’s natural language input sent to correct the original trajectory, such as

Lin = “Stay away from the wine glass”. Let O = {O1, ..., OM} be a collection of M objects in

the environment, each with a corresponding position P(Oi) ∈ R2 and semantic label, such
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as L(Oi) = “glass”. Our goal is to learn a function f that maps the original trajectory, user

command and obstacles towards a modified trajectory ξmod, which obeys the user’s semantic

objectives:

ξmod = f (ξo, Lin,O) (A.1)

Figure A.1.: Typical use case for trajectory reshaping. The user’s natural language command Lin is

processed by function f to reshape the original robot trajectory relative to the target

object Oi.

A.1.2. Context and interaction representation

One of the main differences between this 2D method versus our finial approach is the

process of representing language instruction and context. Similarly to our main approach

(section 3.1.2), we employed a pre-trained language model encoder, BERT [4], to produce

semantic features qBERT(zin|Lin) from the user’s input. The difference relied in the context

representation, instead of using the textual and image encoder from CLIP [17], we make use

of only the textual encoder to extract latent embeddings from both the user’s text and the M

object semantic labels (qCLIP(z|L)). Figure 3.1 shows this encoder modification performed to

adapt this purely textual approach to incorporate image representations of the context.
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Figure A.2.: Adaptation of the initial language-based encoder into the language and image-base

encoder presented in section 3.1

This conversion is extremely facilitated by the fact that the CLIP model was pre-trained to

represent text and images in a joint latent space.

A.1.3. Synthetic 2D data generation

For our simplified 2D dataset, also followed a procedural generation approach and for this

2D cases, we targeted mainly 2 types of natural language interaction:

• Distance changes: modifying distance from the original trajectory to a specific desired

object

• Cartesian changes: modifying the trajectory towards a specific direction ("front", "back",

"left", "right").

In order to generate the natural language interactions, we followed the same procedure

describe in subsection 3.3.1.

Trajectory generation:

We employed an A∗ planner to generate reasonable initial trajectories ξo in randomized

environments with different object configurations, and based on a set of pre-determined

semantic combinations, we used the CHOMP motion planner [55] to compute ξmod by

modifying weights of different cost functions. Our vocabulary involved different directions

relative an object (closer or further away from ·, to the left/right/front/back of ·), intensity
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changes (a bit/little, much, very), and a thousand object labels sampled from the ImageNet

vocabulary. We generated a total of 10, 000 trajectory labels. Fig. A.3 displays examples of

original and reshaped trajectories.

Figure A.3.: Randomly picked planning problems extracted from our validation set. Different colors

display the original trajectory (calculated using A∗), the ground-truth reshaped trajectory

(calculated using CHOMP), and the reshaped trajectory outputted by our model.

A.2. Additional random samples

Figures A.4 and A.5 display random data samples present in the testset and the respective

model predictions using our main approach (Chapter 3). In red, the original trajectory; in

green, the dataset ground truth trajectory; in blue, the modified trajectory.

48



A. Appendix

Figure A.4.: Random samples 1
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Figure A.5.: Random samples 2

A.3. Textual augmentation samples

Success examples:

Original: pass much further away from the ambulance

Rephrased: Pass far further away from the ambulance.

Original: walk slower when passing nearby the hair drier

Rephrased: When passing nearby the hair drier, walk slower.

Original: drive very further away from the water jug

Rephrased: drive very far away from the water jug.

Original: increase the speed while passing in the surrounding of the chimpanzee

Rephrased: In the surrounding area of the chimpanzee, increase the speed while passing.
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Original: drive much faster while passing close to the tiger cat

Rephrased: While passing close to a tiger cat, drive much faster.

Fail examples:

Original:walk a little further away from the sports car

Rephrased: A little distance away from the sports car, walk a little further.

Original: drive a little closer to the ski

Rephrased: drive a little closer to the ski?

Original: walk closer to the vine snake

Rephrased: How do you walk closer to a vine snake?

Original: stay on the front

Rephrased: stay on the front of the line.

A.4. Supplementary videos

• Reshaping Robot Trajectories Using Natural Language Commands: A Study of Multi-

Modal Data Alignment Using Transformers [13]

Video: https://www.youtube.com/watch?v=fhSOb3z7aXE

• LATTE: LAnguage Trajectory TransformEr [14]

Video https://www.youtube.com/watch?v=yCSZcCJEoPc
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